Kinetics and chemomechanical properties of the F1-ATPase molecular motor

نویسندگان

  • Ming S. Liu
  • B. D. Todd
  • Richard J. Sadus
چکیده

F1-ATPase hydrolyzes ATP into ADP and Pi and converts chemical energy into mechanical rotation with exceptionally high efficiency. This energy-transducing molecular motor increasingly attracts interest for its unique cellular functions and promising application in nanobiotechnology. To better understand the chemomechanics of rotation and loading dynamics of F1-ATPase, we propose a computational model based on enzyme kinetics and Langevin dynamics. We show that the torsional energy and stepwise rotation can be regulated by a series of near-equilibrium reactions when nucleotides bind or unbind, as well as characterized by an effective ‘‘ratchet’’ drag coefficient and a fitting chemomechanic coefficient. For the case of driving an actin filament, the theoretical load-rotation profile is analyzed and comparison with experimental data indicates reasonable agreement. The chemomechanics described in this work is of fundamental importance to all ATP-fueled motor proteins. © 2003 American Institute of Physics. @DOI: 10.1063/1.1568083#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemomechanical coupling of F1-ATPase under hydrolysis conditions

F1-ATPase (F1) is the smallest rotary motor protein that couples ATP hydrolysis/synthesis to rotary motion in a highly reversible manner. F1 is unique compared with other motor proteins because of its high efficiency and reversibility in converting chemical energy into mechanical work. To determine the energy conversion mechanism of F1-ATPase, we developed a novel single-molecule manipulation t...

متن کامل

Timing of inorganic phosphate release modulates the catalytic activity of ATP-driven rotary motor protein

F1-ATPase is a rotary motor protein driven by ATP hydrolysis. The rotary motion of F1-ATPase is tightly coupled to catalysis, in which the catalytic sites strictly obey the reaction sequences at the resolution of elementary reaction steps. This fine coordination of the reaction scheme is thought to be important to achieve extremely high chemomechanical coupling efficiency and reversibility, whi...

متن کامل

Experimental thermodynamics of single molecular motor

Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic effi...

متن کامل

Acceleration of the ATP-binding rate of F1-ATPase by forcible forward rotation.

F1-ATPase (F1) is a reversible ATP-driven rotary motor protein. When its rotary shaft is reversely rotated, F1 produces ATP against the chemical potential of ATP hydrolysis, suggesting that F1 modulates the rate constants and equilibriums of catalytic reaction steps depending on the rotary angle of the shaft. Although the chemomechanical coupling scheme of F1 has been determined, it is unclear ...

متن کامل

Cooperativity in the motor activities of the ATP-fueled molecular motors.

Kinesin, myosin and F1-ATPase are multi-domain molecular motors with multiple catalytic subunits. The motor mechanochemics are achieved via the conversion of ATP hydrolysis energy into forces and motions. We find that the catalysis of these molecular motors do not follow the simple Michaelis-Menten mechanism. The motor activities, such as the hydrolysis or processive rates, of kinesin, myosin a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003